Semi-supervised learning for character recognition in historical archive documents
نویسندگان
چکیده
Training recognizers for handwritten characters is still a very time consuming task involving tremendous amounts of manual annotations by experts. In this paper we present semi-supervised labeling strategies that are able to considerably reduce the human effort. We propose two different methods to label and later recognize characters in collections of historical archive documents. The first one is based on clustering of different feature representations and the second one incorporates a simultaneous retrieval on different representations. Hence, both approaches are based on multi-view learning and later apply a voting procedure for reliably propagating annotations to unlabeled data. We evaluate our methods on the MNIST database of handwritten digits and introduce a realistic application in form of a database of handwritten historical weather reports. The experiments show that our method is able to significantly reduce the human effort that is required to build a character recognizer for the data collection considered while still achieving recognition rates that are close to a supervised classification experiment.
منابع مشابه
Finding Centuries-Old Hyperlinks: a Novel Semi-Supervised Shape Classifier
Hyperlinks are so useful for searching and browsing modern digital collections that researchers have longer wondered if it is possible to retroactively add hyperlinks to digitized historical documents. There has already been significant research into this endeavor for historical text; however, in this work we consider the problem of adding hyperlinks among graphic elements. While such a system ...
متن کاملPopulating Ontologies with Data from OCRed Lists
A flexible, accurate, and efficient method of automatically extracting facts from lists in OCRed documents and inserting them into an ontology would help make those facts machine searchable, queryable, and linkable and expose their rich ontological interrelationships. To work well, such a process must be adaptable to variations in list format, tolerant of OCR errors, and careful in its selectio...
متن کاملConstraint scores for semi-supervised feature selection: A comparative study
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملPopulating Ontologies by Semi-automatically Inducing Information Extraction Wrappers for Lists in OCRed Documents
A flexible, accurate, and efficient method of extracting facts from lists in OCRed documents and inserting them into an ontology would help make those facts machine queryable, linkable, and editable. But, to work well, such a process must be adaptable to variations in list format, tolerant of OCR errors, and careful in its selection of human guidance. We propose a wrapper-induction solution for...
متن کاملPattern Recognition: Possible Research Areas and Issues
Pattern recognition is a tough problem for computers, although humans are wired for it. Pattern recognition is becoming increasingly important in the age of automation and information handling and retrieval. This paper reviews possible application areas of Pattern recognition. Author covers various sub-disciplines of pattern recognition based on learning methods, such as supervised, unsupervise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014